Construct logistic-normal covariance matrix
get_logistN_Sigma.Rd
Helper function to generate the covariance matrix (\(\Sigma\)) used in
logistic-normal composition models. The structure depends on the
specification of comp_like
:
comp_like = 2
: independent and identically distributed (iid) across categories (\(n_\mathrm{categories}\)).comp_like = 3
: first-order autoregressive (AR1) correlation across categories (\(n_\mathrm{categories}\)).comp_like = 4
: two-dimensional AR1 correlation across categories and sexes (\(n_\mathrm{categories} \times n_\mathrm{sexes}\)).
Arguments
- comp_like
Integer specifying the logistic-normal correlation structure:
2 = iid across categories
3 = AR1 across categories
4 = AR1 across categories and sexes
- n_bins
Number of composition categories (e.g., age or length bins). For
comp_like = 2, 3
, the covariance matrix is dimensionedn_bins
. Forcomp_like = 4
, it is dimensionedn_bins * n_sexes
.- n_sexes
Number of sexes. Required when
comp_like = 4
.- theta
Standard deviation parameter controlling the overall scale of the covariance.
- corr_b
Correlation parameter across categories, in the interval \((-1, 1)\). Used when
comp_like = 3
or4
.- corr_s
Correlation parameter across sexes, in the interval \((-1, 1)\). Used when
comp_like = 4
.
Value
A covariance matrix \(\Sigma\) with dimension:
n_bins
(comp_like = 2, 3
)n_bins * n_sexes
(comp_like = 4
)
See also
Other Utility:
fit_model()
,
get_par_est_info()
,
post_optim_sanity_checks()
,
rho_trans()
,
set_data_indicator_unused()
Examples
if (FALSE) { # \dontrun{
n_cat <- 5
n_sexes <- 2
# iid example (categories only)
get_logistN_Sigma(comp_like = 2, n_bins = n_cat, n_sexes = NULL, theta = 0.5)
# AR1 across categories
get_logistN_Sigma(comp_like = 3, n_bins = n_cat, n_sexes = NULL, theta = 0.5,
corr_b = 0.3)
# AR1 across categories and sexes
get_logistN_Sigma(comp_like = 4, n_bins = n_cat, n_sexes = n_sexes, theta = 0.5,
corr_b = 0.3, corr_s = 0.2)
} # }