Run retrospective analyses for RTMB models
do_retrospective.Rd
Performs retrospective peels by truncating the input data, optionally applying Francis reweighting and parallelization, and returns estimates of spawning stock biomass (SSB) and recruitment for each peel.
Usage
do_retrospective(
n_retro,
data,
parameters,
mapping,
random = NULL,
do_par,
n_cores,
newton_loops = 3,
do_francis = FALSE,
n_francis_iter = NULL,
nlminb_control = list(iter.max = 1e+05, eval.max = 1e+05, rel.tol = 1e-15),
do_sdrep = FALSE,
fishidx_datalag = array(0, dim = c(data$n_regions, data$n_fish_fleets)),
fishage_datalag = array(0, dim = c(data$n_regions, data$n_fish_fleets)),
fishlen_datalag = array(0, dim = c(data$n_regions, data$n_fish_fleets)),
srvidx_datalag = array(0, dim = c(data$n_regions, data$n_srv_fleets)),
srvage_datalag = array(0, dim = c(data$n_regions, data$n_srv_fleets)),
srvlen_datalag = array(0, dim = c(data$n_regions, data$n_srv_fleets)),
tag_datalag = 0
)
Arguments
- n_retro
Integer. Number of retrospective peels to perform.
- data
List. Data input for the RTMB model.
- parameters
List. Parameter values for the RTMB model.
- mapping
List. Mapping information for the RTMB model.
- random
Character vector. Names of random effects in the model. Default is
NULL
.- do_par
Logical. Whether to run retrospective peels in parallel. Default is
FALSE
.- n_cores
Integer. Number of cores to use for parallel execution if
do_par = TRUE
.- newton_loops
Integer. Number of Newton loops to run during model fitting. Default is 3.
- do_francis
Logical. Whether to apply Francis reweighting within each retrospective peel. Default is
FALSE
.- n_francis_iter
Integer. Number of Francis reweighting iterations. Required if
do_francis = TRUE
.- nlminb_control
List. Control parameters passed to
nlminb
during model fitting. Default islist(iter.max = 1e5, eval.max = 1e5, rel.tol = 1e-15)
.- do_sdrep
Logical. Whether to return standard errors from
sdreport
. Default isFALSE
.- fishidx_datalag
Integer array. Lags for fishery index data [regions x fleets]. Default is zeros.
- fishage_datalag
Integer array. Lags for fishery age composition data [regions x fleets]. Default is zeros.
- fishlen_datalag
Integer array. Lags for fishery length composition data [regions x fleets]. Default is zeros.
- srvidx_datalag
Integer array. Lags for survey index data [regions x fleets]. Default is zeros.
- srvage_datalag
Integer array. Lags for survey age composition data [regions x fleets]. Default is zeros.
- srvlen_datalag
Integer array. Lags for survey length composition data [regions x fleets]. Default is zeros.
- tag_datalag
Integer. Lag for tagging data. Default is 0.
Value
A data.frame
containing retrospective estimates of SSB and recruitment.
Columns include:
Region
: Region index.Year
: Year index.Type
: "SSB" or "Recruitment".peel
: Peel number (0 = full data, 1 = 1-year peel, etc.).value
: Estimated value of SSB or recruitment.pdHess
andmax_grad
(optional): Information fromsdreport
ifdo_sdrep = TRUE
.
See also
Other Model Diagnostics:
do_jitter()
,
do_likelihood_profile()
,
do_runs_test()
,
get_catch_fits_plot()
,
get_comp_prop()
,
get_idx_fits()
,
get_idx_fits_plot()
,
get_model_rep_from_mcmc()
,
get_nLL_plot()
,
get_osa()
,
get_retrospective_plot()
,
get_retrospective_relative_difference()
,
plot_resids()
Examples
if (FALSE) { # \dontrun{
# Run a 7-year retrospective
ret <- do_retrospective(
n_retro = 7,
data = data,
parameters = parameters,
mapping = mapping,
random = NULL,
do_par = TRUE,
n_cores = 7,
do_francis = TRUE,
n_francis_iter = 5
)
# Plot retrospective SSB and Recruitment
library(ggplot2)
ggplot(ret, aes(x = Year + 1959, y = value, group = peel, color = 2024 - peel)) +
geom_line(lwd = 1.3) +
facet_wrap(~Type) +
guides(color = guide_colourbar(barwidth = 10, barheight = 1.3)) +
labs(x = 'Year', y = 'Value', color = 'Retrospective Year') +
scale_color_viridis_c() +
theme_bw(base_size = 15) +
theme(legend.position = 'top')
} # }